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ALGORITHM FOR THE INVERSE OF
A HERMITIAN TOEPILTZ MATRIX

INTRODUCTION

The efficient inversion of a given matrix and the related problem of solving a system of linear
equations has been a subject of intense study for many years. The literature on this subject is so vast
that no survey can be exhaustive. For example, a tentative classification and bibliography on solving
systems of linear equations written by Forsythe [11 contains over 400 titles. An excellent handbook on
the various numerical methods of matrix inversion and the solution of linear equations has been writ-
ten by Westlake 12]. Different methods are compared based on such measures of effectiveness as
speed, storage requirements, and convergence rates if applicable.

Numerical methods for matrix inversion and the related problem of solving a system of linear
equations can be divided into two classes: the direct methods and the indirect (iterative) methods.
Direct methods such as Cramer's rule [31, Gaussian elimination [31, and orthogonalization [3-41 yield
an exact solution after a finite number of operations if there is no roundoff error. Iterative methods on
the other hand such as gradient methods [4], the back and forth Seidel [41, and successive overrelation
[51, begin with an approximate solution and obtain an improved solution with each step of the iteration.
The accuracy of the solution depends on the number of iterations performed.

For most direct methods of matrix inversion, the number of arithmetic operations is proportional
to M3 where M is the row or column dimension of the given square matrix. For iterative methods, the
number of operations per iteration is proportional to M2. In general, the speed of an algorithm if there
is no parallel processing is proportional to the number of arithmetic operations so that this measure can
be used to evaluate the performance of a given algorithm.

A direct procedure for finding the solution of simultaneous linear equations where the multiplying
matrix is Toepiltz was developed by Levinson and presented in Norbert Weiner's book, Extrapolation,
Interpolation, and Smoothing of Stationary Time Series [6]. This algorithm takes advantage of the Toepiltz
form to reduce the number of arithmetic operations to be proportional to M2. This algorithm has been
used by Burg [7] to estimate line spectra in a methodology commonly called maximum entropy spec-
trum analysis (MESA).

This report presents a new direct method for finding the inverse of an M x M hermitian Toepiltz
matrix. An M x M hermitian Toepiltz matrix, H, has the form

ho hi h7 ... hL_1

h1 ho hi. h-2

h2 hi, ho . h-3

Hib= . . . . . (1)

Manucrip subme A....h9
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K. GERLACH

where ho is always real and * indicates the complex conjugate. Note that it is only necessary to specify
the elements of the first column of a hermitian Toepiltz matrix in order to define the entire matrix.
Therefore, we introduce the shortened notation: if H is an M x M hermitian Toepiltz matrix, then we
write

H = ((ho, h, h21 . hM-1)) (2)

where hA, k = 0, 1, ... , M - 1 are the elements of the first column of H.

We will take advantage of the form of a hermitian Toepiltz matrix and develop new direct
methods for the solution of simultaneous linear equations and the matrix inverse. The basis of these
related algorithms lies in discrete Fouries series theory. Efficient algorithmic procedures are presented
which use the theory of the preceding sections to find the matrix inverse and the solution of simultane-
ous linear equations respectively. We then discuss the software implementation of the matrix inversion
algorithm.

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

In this section, we will develop an algorithm for solving for the unknowns of a system of M
independent linear equations. Using this algorithm, we will see in the next section that an algorithmn
for obtaining the inverse of a given hermitian Toepiltz matrix can be derived.

Consider the vector equation

MY = c (3)

where H is an M x M nonsingular hermitian Toepiltz matrix, c is an M x I known vector, and x is an
M x I unknown vector. We desire to find x. We use the following approach. Let us define a system
of N = 2M - 1 independent linear equations as

|~~~~ W M [p) |XA | |jM
ICMI p 1 2 l4)

2 ;21 22 | j XM¼I

where x is an M x 1 unknown vector, T M = T, xm-, is an (M - 1) x l unknown vector, 0 is a zero
filled (M - 1) x I vector, and

1 1 I PI'2 1L PW',PW) } - - ((ho, .hi, hM-1 hL1, h>-2, h, hr)))

A n
Li I-M.

We call a matrix defined by the form seen in Eq. (5) as an up-down hermitian Toepiltz matrix
(UDHTM) because the subscripts of hi seen in Eq. (5) increase and then decrease. We also assume
t hat I M ' noUIIMIgu'II. i tin elLtrLizA, M, as seett 'i, LEL. atr) tutu d Jf tA pa titinutvuas tncunwa:. t I a

M x M matrix, Prf) is an M x (M - 1) matrix, P (M) is an (M - 1) x M matrix, and P~t} is an
(M - 1) x (M - 1) matrix. In addition, we can also show that Phu3 = H and thus is hermitian Toe-
piltz and that P2(2m1 is also hermitian Toepiltz. In fact

' 22 - io , I 1. '- 'i IL)

2



NRL REPORT 5539

Note that the system of equations defined by Eq. (4) contains (2M - 1) unknowns and has a unique
solution if P[l ) is nonsingular. Also note from Eq. (4) that if Pft) = H and CM= C, then 4m= X.

Thus, if we solve for the unknowns in Eq. 4), we have also solved for x in Eq. (3).

Let us rewrite Eq. (4) as

[lv, l |rQM) |UM) i - 1

where

Q { M) Q (M 1
Q PM ) QM (8)

2 1t 22

such that Q&(m) is an M x M matrix, Q1(2M) is an AM x (M - 1) matrix, Q1fm) is an (M - 1) x M
matrix, and QW") is an (M - 1) x (M - 1) matrix. We show in Appendix A that

vA N ' N i ' N

where EN is the Nth order discrete Fourier series (DFS) matrix defined by Eq. (A6), and A is a diago-
nal matrix whose element, Xkk, consists of the Nth order DFS of the sequence (ho, h1, ... , -,
h>i, hL- 2 ... , h11 (the Nth order DFS is defined by Eq. A4). in fact, if

(sOi, *-- SNi} = DFS (ho, h1. hu, h1 .l Xl} (10)

where s,5, S., S. N-I is the sequence that results by finding the DFS of the sequence (ho, 1, ....

hM-l, hZ-1, ... h, 4, then

Xkk = Sky1; k = 1, 2, N. (i)

It is also shown,, A ppendix A that if PM is a UTDHTM then P 1 nr fl is alto a TUnHT' Thius we
I 13 I3 IIL I 1it f~I .. 1JAC ia. ~ M' i'IIV 1LL M VM oi.i,,L

see that QM can be written

QM ((go, g I, gm-. -g - 1 . g)). (12)

Hence, it is seen that Q (Ai and Q (2m) are hermitian Toepiltz matrices with

Q i( )= ((g0, g1 . gmj)) (13a)

and

Qf" = ((go, g .* a, M-2))uj 1b)

Now, let us rewrite Eq. (7) in the equivalent form as

XM = Q(M) CM + QW0 XM1 814a)

0 = Q CM + Q2M) 5. -1I (14b)

3



K. GERLACH

Equation (14b) can be rewritten as

p11-t Xmf_1 = _e-l (140)

where we have defined

pM-1) = COM i =- Q2(M) c2M. (15}

IC ... ~ a i..+,~ C,... tt_ (1A 0') -nn -rA A-A Tnf1A . , -niw Pn (IAA) Wnnt
If, we la A a so'u+ion ar- 'z_ in . 1&,w ol .n f o find ,f,.eueFwf4d 4^~
II W1U iiu3IULIJI 1111 ACM II t4. ikrraf, VYL W~L*Lt 4111 -tM. £ - (S- 4. XLh. ztr-

ever, PhmI) is a (M - 1) x (M - 1) hermitian Toepiltz matrix and Cm-, is a derivable (M - 1) x I
vector. Thus, we have reduced the order of the problem from finding an unknown M x 1 vector, x,
to finding an unknown (M - 1) x 1 vector, tm-1, whose multiplying matrix is also hermitian Toepiltz.
Hence, the above procedure is reiterative and must be repeated M - 1 times with the assumption that
Plft' k= 2, .. M are nonsingular. On the M - I iteration, the equations have the form

x2= Qh" jc2 + Qff2) RI (1 6a)

- = (2) C 

V122

Note that it1 and Q2} are now scalars. Thus, no matrix inversion of 2ff is necessary (it is assumed
Q2%2 ) ;0) Therefore, xI is known and xi2 (a 2 x 1 unknown vector) can be found by using Eq. (16a).
in general, Lte unknowns ik, k = 2, 3, ... , Mcan be obtained by using the forward reiterative for-
mula

-xk =Qlkl -jk QLk1 ) xkk_1. (t 7)

The constant k x I vector. t,_ k = 2, 3, ... , M can be obtained by using the backward reiterative for-
mula

ckI- qk C) ; k = M, M- 1, (1 8)

with the nnal condition that M = c-: in the uiscussion Of softwark algori4tkl for mJatlax wekkk lk*.e

discuss how to obtain the matrix, Qk, k = M, M - 1, ... , 2.

TOEPILTZ MATRIX INVERSION ALGORITHM

We can use the algorithm for finding the unknowns of a system of linear equations uiscusseu in

the preceding section to obtain the inverse of a given hermitian Toepiltz matrix. Let us define the
k x k matrix, f k. such that

n [Pk ]1 ; k= 2, 3, . M (19)

and

1 22G

2f2

Note from Eqs. (3), (4), and (19) that Om JW4 . Now for k = M, Eq. (14c) implies that

XM = fl CM (21)

Equations (21) and (15) imply that

3XU-I £ lM-1 EM-1 a Ul-1 OM) TM = 1 lM-1 Qm-i Q2i c (22)

4
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Therefore, if we substitute Eqs. (21) and (22) into Eq. (17), we obtain

l AC= Q (M) C- Q( T)fQ M4-1 0M (23)

(Q ) -112 f -Q(A M) ( ) CQ

Because c is an arbitrary M x 1 vector, Eq. (23) implies the following formula:

f M= Q It -P Q4) QM - Qh2 (24a)

Similarly, we can find a formula for ft M [P (M 1}- 1
. We do this by choosing a new arbitrary

vector, cj, of length M- 1, and initiate solving a system of M- I simultaneous equations as we did in
the preceding section. Using equations similar to Eqs. (21) to (23), we would derive an equation
exactly like Eq. (24a) except that the index is M- 1. Hence it is possible to write a reiterative formula

=k Qfi - Q2) Q k-1 Q2T1 (24b)

with k = 2, 3, ... , M, and with ft given by Eq. (20). Thus if we reiterate Eq. (24b) M - I times,
we obtain HI1 = f1 .

SOFTWARE ALGORITHM FOR MATRIX INVERSION

In this section, we present an efficient procedure for obtaining the inverse of a hermitian Toepiltz
by using the methodology described in the preceding sections. To begin with, it is seen from Eqs. (20)
and (24b) that all that is necessary for computing the X k1 matrices, k = 1, 2, . M. , A are the Qk

matrices. The partitions, Q~f) Q4) Q2), and QW() can be obtained easil- frorn tf N (V is a
UDHTM, so that all that is necessary to completely specify it is the first column of the matrix (actually
because of the up-down property, just the first M elements of the first column are needed). The matrix

Qk can be found by using the formula

Qk = I F;k-1 AF F2 k-; k = 2, 3, M (25)2k - 1 

where F 2 k1 is the (2k - 1) order DFS matrix defined by Eq. (A6) and Ak is a diagonal matrix. The
diagonal element, X (k), I = 1, 2, 2k - 1 is found as follows. If

Q = ( *gjk+l) g(k+1) &(k+1) g(k+lP' I(k+ 1) (26)

and
{sjk), 4* = DES ( [g41l)' g1(k+l).g~k+ 1, gk0' . gk+l)} 27t Jk) (k) S2k) 2) - DES 9g*lgik) -,k- I 9k 1 9l (27}

then

X 1 () S_§k ; It 1,2,., 2 k - 1. (28)

Now in order to generate all Qk, Am must be known. However, the matrix, AM, can be obtained
by using the elements that define H and Eqs. (10) and (11).

To evaluate Qk, seen in Eq. (25), it is not necessary to perform all of the matrix operations indi-
cated by this equation. In fact, it is straight forward to show (see Appendix A) that

(gJk)* glk), * t... gk(k) __ I 

D (2k- -)xk' (2k- IW), $k) (2k - 1AIt I)12k - 1) | (29)

5



K. GERLACH

Thus, based upon the preceding discussion, we present the following algorithmic procedure for
finding Bi:

A. Set k - M- 1, g/MtI) hi, I = 0, 1, ... , - 1.

B. Calculate tsS), s['), ... , s2T,} by using Eq. (27).

C. Calculate (gjk, 0 g(1A, 91 , gk,,k{j by using Eqs. (28) and (29).

D. Store Ig(k) g) gktk3k}

I. k=k -1.

F. GotoBifk > 1.

G. Set O l = -m) (note g1 2) = Qj2 ) and k-2.

H. Set Qk = ((gOd *), gk.l. I gjk) . lk),

I. Construct partitions: QIf), Q8), Q21 3

J, a = -Q QW MP a .Ik)

K. k= k+L.

L. Go to H if k <M.

M. H`f- Om.

The algorithm can be divided into two parts: the first part (steps A-F) consists of finding the elements
of Qk, k = 2, 3, .. , M, and the second part (steps G-M) calculates through a reiterative formula (step
I) the a k matrices.

ft can be shown that go) and s5(k), 1 = 0, 1, ... , 2k - 2 are always real. Because of computa-
tional errors, however, these values may have a small imaginary part. It was found that the accuracy of
the matrix inverse, -o', improved if only the real part of the computed aGrW or was used in
succeeding steps of the algorithm.

A Fortran computer program listing that implements the matrix inversion algorithm is given in
Appendix B.

SOFTWARE ALGORITHM FOR SOLUTION OF SIMULTANEOUS EQUATIONS

Similar to the preceding section, we present an algorithmic procedure for finding the solution of a
system of simultaneous linear equations as given by Eq. (3> as follows:

A. Set k = M, gj(M+= hi; it= O, 1, 2, ... ,A l ,M= c.

B. Calculate [so , .1( . s.,!1} by using Eq. (27).

C. Calculate (glk), g~k), ., , g,[k)l by using Eqs. (28) and (29).

6
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D. Store (gok ), g(k). gkk))

E. Construct partition Q1 ) by using 94*)1 g1), *.- ,

F. tkI = -Qk) Ck; store 4-1.

G. k=k-1.

H. Go to B if k > 1.

I. Set FE, = il,/2g (note xil, ?l are scalars) and k 2.

I. St Q( -((g(*)' g1(k) -, gk~k{, g,~$, ... kJ. Set Qk = I(g _I 81_7gk1 kI z*wg

K. Construct partitions: Q(k), QfPk

L. i* _Qf)U +Q&- nk( 't&.

M. k= k+1.

N. Go to J if k < M.

O. x-X= M.

IMPLEMENTATION OF THE MATRIX INVERSION ALGORITHM

The value of any algorithm that is used as a computer library subroutine is determined by such
measures as speed, the amount of computer memory needed, and the amount of hardware necessary to
implement the algorithm. The last two measures can sometimes be traded-off to obtain faster speeds.

For the matrix inversion algorithm, the amount of memory (double words for a complex number)
needed is at most M 2 . To see this, we observe from steps A-F that it is necessary to store
M(M - 1)2 complex numbers. For steps G-M, it is necessary to store at most M 2/2 complex
numbers. This results because it can be shown that if Fk. = (f ?)), k = 1, 2, ... , M, then

'' n nIf n~itk-lflstn =1J tJ t ( k 30)

Therefore, only half of the elements of the f k matrix need to be stored. Since k < M, this number is
at most Mh2 /2. Hence, it follows that the maximum memory needed for steps A-M is M2. Storage
requirements for most matrix inversion algorithms are of the order, Al2 [2]. Thus there is no advan-
tage in eliminating memory by using the matrix inversion algorithm presented in this report.

A good indication of the speed of an algorithm is the number of multiplications (Xs) that are
necessary to perform the algorithm. Multiplications and divisions that are implemented digitally are
generaity much slower operations than the addition, subtraction, loading, and storing operations and
hence may account for the greater portion of the processing time. For steps A-F of the matrix inver-
sion algorithm, the approximate number of Xs is 2M 3/3 and for steps G-M the approximate number of
Xs is M 4/4. Hence, the total number of Xs is of the order of M4 . For most direct methods of matrix
inversion the number of Xs is of the order of M3 [2]. Thus it is seen that the algorithm presented in
this report is comparatively slow at least when implemented in pure software.

There are two other disadvantages associated with this matrix inversion algorithm. First, if the
given hermitian Toepiltz matrix H is singular, the algorithm does not indicate this. Second, if H is

7
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nonsingular, the intermediate UDHTMs employed in the algorithm may be singular. In this case, the
algorithm fails. It is possible to determine if an intermediate UDHTM is singular by noting whether

A _ ,jL.. I -s ,u r\)_ 1 1 AI,,IA nQ\ATv. .iA .W A AX. .flt. MoAany of the values of ' t, i- = L, ,... - I, calcunv le u .n .I in oAl t-- U. -- C113 U_ UI1a VGUI

are zero, then the given UDHTM is singular and the algorithm fails.

SUMMARY AND CONCLUSIONS

A new method for obtaining the inverse of a hermitian Toepiltz matrix was presented. In addi-
tion, a related technique for finding the solution of the system of linear equations, Hx5 = cf, where H is
a hermitian Toepiltz matrix, was developed. Efficient algorithmic procedures for both of these methods
were listed.
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Appendix A
INVERSE OF AN UP-DOWN HERMITIAN TOEPILTZ MATRIX

in this appendix, we derive the *tnverse of a nonsingular upndo-n hermr-itiaon Tonpiltz, ori
(UDHTM). Let A be a N x N UDHTM such that

A = ((ao, a1 , a2 , ... aM-,, aL-, aM-2 . at )) (A1)

where ao is real and N = 2M - 1.

The methodology of finding A-' is embedded in discrete-Fourier-series (DFS) analysis. The DFS
periodic convolution theorem [All states that if x(k), y(k) and z(k), k= ... -2, -1, 0, 1, 2,
are periodic sequences with a period equal to N and

N-I
z(n)= I x(ny(n - m), (A2)

m-0

then

Z (k) = X (k) Y (k) (A3)

where X(k), Y(k), and Z(k) are the Nth order DFSs of x(n), y(n), and z(n) respectively. Recall
that a DFS is defined by the mapping of a sequence, u (n), of length N into a sequence, U(k), through
the transformation

N-]
U (k)= 7£ u (n) WN", k = O, 1 2, N - I (A4)

n=0

where WN = exp {- 2iri/N , i= _-1. The sequence, u (n), can be found from the inverse transfor-
mation

N-I
u(n) N I U(k) W,~kn, n= 0, 1, 2, . N- 1. (AS)

Let us define FN to be an N x N matrix such that

FN - (fm); filn = WN(m-)(n-L); m,n = 1, 2, N. (A6)

The matrix FN will be called the Nth order DFS matrix because we can rewrite Eq. (A4) in matrix nota-
tion as

U= FJI (A7)

where U= (UMO), U(1), ... , U(N- 1 )), u= (u(O),, (l).u(N- 1))t and Tdenotes tran-
spose. The DFS matrix has the property that

p--1 1 (A8)
PN N eN (

This property can be shown by rewriting the inverse DES transformation, Eq. (A5), in matrix notation
and comparing this to Eq. (A7).

9



K, GERLACH

Let us define a periodic sequence y (n), n = 0, 1, 2, . N. , N- I such that

y(n) = {:x, n =,' 1, .. , 1(A9)

yn a'-,, n - M, M + 1, N.............. - -1. .. A9

It can be shown that Y(k), k = 0, 1, ... , N - I are real.

We can now rewrite Eq. (A2) in matrix notation and show that i = Ax or equivalently

x= A-1 7 (AlO)

where A is an N x Nh UDHTM defined by Eq. (Al), 7 = (z(O), .. ,, z(N - I}tr and x-I (X....
x (N - i))h We can also write Eq. (A3) in matrix notation as

Z = AX (All)

where A is a diagonal matrix with real diagonal elements Xkk= Y(k - 1), k= 1, ... , N. Z= (Z(0),
Z (N - I))T and X= (X(O), ... , X(N - lDT However, we know that Z = JZ and X= FNX,

so that Eq. (A1l) can be rewritten as

FN Z = A 1% X. (A12)

If we solve for x in Eq. (A12) and use Eq. (A8), we find that

x. = 1 F.A-'2. (A13)
N

Subtracting Eq. (A13) from Eq. (AlO), we see that

'= |F FA-FN- A-'. (A14)

Since 7 can be chosen arbitrarily, this implies that

A-'- = FN A-F N. (AlS}

We summarize our result by the following theorem:

Theorem: If A is an N x N UUHTM, then A can be written in the form

A = I Fn * A FN

where FN is the Nth order DSF matrix and A is an N x N diagonal matrix with real elements. In addi-
tion, if A is nonsingular, then A-t has the form

'-] - I F A-' FN.

We now prove the following theorem:

Theorem: If A is a nonsingular UDHTM, then A-' is a UDHTM.

10
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Proof:

Let us derive an individual element of the matrix A-' bv using Ea. (A15). By direct calculation,
it can be shown that if A-' = (am") m,n = 1, 2, ... , N, then

1 N-I
am,, i - X Y 1) nk m)k (A16)

k= O

We show that A' is hermitian by using the fact that Xk k= 1, ... N is real and WNK= We.
Thus

Tm= [4 X, X7k w1 tmOk1
= N -AAI1 ( )k

I v AI; W,(M-n)

= 1 N-i 

k=O
= ___ -I py(n-rn)k

N `- KT1 1 

Alsn irt i readily shnown frnm Pn (AIJY that the diiannnal RIem,-ntc (m=n) nre real

We use the form of Eq. (A16) to show that A-' is Toepiltz. We see that it is possible to write
a,,, in the form a,,, = 3n-, for all m and n, which is exactly the form of a Toepiltz matrix.

We show that A- has the up-down property by demonstrating that for the elements in the first
row that

a It, = a l'(N-n+2)- (A17)

We do this as follows:

(t(-+)= - X x k~ 4 Nt+)

1 N-I
N X- 11 WN(N-,I)k

k=O

= Cola.

Hence, the theorem is proved.

We see from Eq. (A16) that in order to find the elements of the first row of A-', we can write

1 N-I
a18= ; S Ax-41 wnt-I)k. (A18)

N kO

Tj oeve, w noice th. *L_ 1r.. -Ic n /A 10X -- -r -
HIowvert, we niic LLIaL Lije zUrm f u q. Walo) is that of a urS (see Eq. (A4)) except for a scalar fac-
tor of 1/N. Hence, to generate the first row of A-, we merely find the Nth order DES of the sequence
X j 1, X2 1, ., X K'y and divide all elements of the DFS by N. Therefore, since the first row of a hermi-
tian Toepiltz matrix specifies the entire matrix, we have found a simple method of generating the

11
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inverse of A - . Firstly, we generate X A, 2, ..- AXN by calculating the Nth order DFS of the sequence
a0, a1 ,. M..1aM. .a . .ar. Secondly, the first row of A-l is found by calculating the Nth order DFS
of the sequence X-A . . and then dividing all elements of the DFS by N. Finally, because,
A-' is a hermitian Toepiltz matrix, all other elements of the matrix are specified by elements of the
first row.

REFERENCES

Al. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1975.
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Appendix B

PROGRAM LISTING OF THE MATRIX INVERSION ALGORITHM

SUBROUTINE T0EPLZ Cfi,OŽGA,A,N)

C

C TLIS SUB.ZOUTINF FITNDS T>F 1laVEiSE Of A 3.d4 Lfli4JSINGU"AF
C HE2R4TTIAN TOBP0 7 LTZ l•ATBIX i7D"LE

C

C H=IhE HF56aIm _ TCPZ ŽiATilAiX
C (NOTE Thl DIAGONAL ELUINTS tiUST s sA4T

C OiEG.V=IhE MATRIX _NVE2SE 3F Hl

C Y1=1H-t = CIF 05-. CCLU N DiLl'NS'LS ON OG Hf

c N=2M3-1
c
C 7LiE ALGOO M HN AMki FAIL IF AN7 `L.1Y iDIA2 Ait S AiT IS
C US D IN CALC U LATL- A IN 1 NG t E q ts L S 1 c -Li ;J JAl .2 T I i S:
C OCUPES THE MESSAGF " ALGOEI'uŽ1 GoIL-7' TI.ttALD.

I 24LC T C iCLX*8i8 ( ,O-.1,j, wZ
DMNSIFON I i H ,i) , T tIN ,) ,i IN,N) ,Tt;;,l ,3j6 0.A (iN,N)

I ' N , N) J, T1 LiŽ, .1) 1 2 (,i j , 22i L ' ) t LJII ) r ) I
I wT1 Dm I r hT 4 t It i Mx# >

LATA P /3. 141 5929/,AEL;r..3/.UuJuOlJ/
o i JIT l ALIZLE MATFIX CONSTAN TS
C INITIALIZE I AATEIX

DO 300 K=1,M
TI (K N) =5 l ,1)

3uO CONL NUE
1 =- +1

DO 400 i=Yt 1 N
T2K CmI =CONlfs4IH tN+2-K 1

400 CONTINUE

C FIND SUCCESSIVE DES
DO 500 tMilI,Ml1

NN=2.* *MM-1
C COMPUTE DES MIATRIX OF OD7R tN

A 1=-2. *Pi /NN
DO 6"0O K=1.NN

DO 7oo L=I ,N
AC=CO S K-1) *L-1) *Ai)
AS=SN =C,-)LX(AC-A*Al)
E (K,L) -CiMlPLX 3'AC,AS3

13
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7u u Cu Nt'1 N II
600 CONTINU7

D0 300J h=i INN

3000 U P(K, 1)=T (4AIM)
C F IND DFS OF T7

Do 3200 bi1 ,NN
F- (-S I ) =CklP>ILX (Q, U. )

DO 3300 L=l,NN
33U . (Ki /1 -) lK ,1 ) +7 tF {iR) TPS :1 1w )

'3200 CCN TINU E
7x v2i v- K= 1, &Tm

n~~~~~~T Z4? pk;t-fS^
R (K ,1 ) =1/ (;NN*?J (l•, 1 )

i30 0 CON T IN! U E

DO 3400 $.14,_ljNN

P (K ,IC PL (0. Io0)
DO 3500 L=1,0N

AAbS FEA-L (77 (K,1 )))
LF(Tt.LIehF3LVOP)TYPBe D O

1Ut) FOUEIYAT ( fxfIXULGOBTT, A FAILS')
I E (A.LT. AYBFOR) -ETLP- J

3400 CONlTiNUlE
TP71 l),i=)±kLV..Y1 i -
1(1 ,;M=TP(I. ,1)

DO 900 &2N

I V 1 M I -Vrk tI
4 t t. 'I z CS - . I 

901 -CONTINUE

Nmml=N-1
DO 1000K1,K

1000 (CET-,INUE
NN 1-2. *ts 1 i
DO 1100 h=ŽM,NNI
I ( K ,XN NI ) - Co jNJ G (7 ( INN + 2-K, I)

7 10U CONT_ LhUE
S Vu CCU N,- 11_ U -E
500 CONTINUE

C. CO ViJU TEF " I~V EEr S? !A TE X

OMY~ IL G A 4 1 -1 /T CS 2)
r a 19t1 t Mr=2 -j

NN-2. *M- I
C FIND QbMA-T UX

(11 , t)-1 = T
DO 13uo K=2,N'N

1 3 0 'tK) CONJG tKi;h})
DO 1400 E=2,NN

LW U 2K I1) -CC NJG K,)t
DO 1600 =>2,NN

DouCCKLINUB12,iiu C J) _(Q ('i-_ ws- t
I 0 U L Ct N' I N U'-'
^50) CC N T iN U E
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C F-N; ID ,Q1 2,Q 2 1

-mi 1=M-1
mm P1i= N 24+1

Do 360U K=1,,924
DO 3700 1=1 ,d4i

2700U Q1(K,L)=Q(K,L)
3600 CONTINUE

L7' .J 3 V V- 1R-1,s M

DO 3900 L=i,mm21
3 900) T 2 (K ,L) =0 t K, MII L)
3800 CONIINNU E

DO 4000 K=l,2M4

DO 4100 I=1 ,'M
4100 221l(K,L)=Q(ml'M+K,L)
40u0 CCNTINUE

C COMPUTE INVERSE
DO 4200 I=11M41
DO 4300 J= ,IMn
RHOC (,J) =CMPLX (0,, ,0.)
DO 4400 K=1,MMi

4U Ou ?RH (I, J) =FH (I, J) +GNEGA L24, K) *$,21 iK, Js
4300 CONTINUE
4200 CONTINUE

DO 4500 1=1,NN
DO 4600 3=1,311
THKWIAT rJI =CIIP TY '0 -A0
EO 4700 K=1 ,lŽI1

4700 THIT F1(c1, J ='HETA (1,3J) + 12 (1 K) *Ft1O (&X,J;
4600 CCNTINUE
450U CONTINUE

DOL 48VU ;-1,NN
DO 4900 J=1 ,mN

4900 OMC-A (.1,J)=Q1 1I(IJ)-CHETA (IJ)
4800 CONTINUE
12U0 CONTINUE

BET UP N
END
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